Skip to content

Architecture

Model Stack

Type Description
Base Models Pre-trained models for common tasks
Fine-tuned Models Custom models trained on CRED data
Ensemble Models Combined models for improved accuracy
Real-time Models Low-latency inference models

Data Processing Pipeline

Data Sources

  • Structured Data - Databases, APIs, CSV files
  • Unstructured Data - Text documents, images, audio
  • Real-time Data - Streaming data from various sources
  • Historical Data - Time-series data for training

Processing Stages

┌─────────────┐    ┌─────────────┐    ┌─────────────┐
│   Ingest    │ →  │  Preprocess │ →  │  Features   │
│   Data      │    │   & Clean   │    │  Engineer   │
└─────────────┘    └─────────────┘    └─────────────┘
                                             │
                                             ▼
┌─────────────┐    ┌─────────────┐    ┌─────────────┐
│   Deploy    │ ←  │  Validate   │ ←  │    Train    │
│   Model     │    │   & Test    │    │    Model    │
└─────────────┘    └─────────────┘    └─────────────┘
  1. Data Ingestion - Collect and validate input data
  2. Preprocessing - Clean, normalize, and transform data
  3. Feature Engineering - Extract relevant features
  4. Model Training - Train models on processed data
  5. Validation - Test model performance and accuracy
  6. Deployment - Serve models in production environment