Architecture
Model Stack
| Type |
Description |
| Base Models |
Pre-trained models for common tasks |
| Fine-tuned Models |
Custom models trained on CRED data |
| Ensemble Models |
Combined models for improved accuracy |
| Real-time Models |
Low-latency inference models |
Data Processing Pipeline
Data Sources
- Structured Data - Databases, APIs, CSV files
- Unstructured Data - Text documents, images, audio
- Real-time Data - Streaming data from various sources
- Historical Data - Time-series data for training
Processing Stages
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Ingest │ → │ Preprocess │ → │ Features │
│ Data │ │ & Clean │ │ Engineer │
└─────────────┘ └─────────────┘ └─────────────┘
│
▼
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Deploy │ ← │ Validate │ ← │ Train │
│ Model │ │ & Test │ │ Model │
└─────────────┘ └─────────────┘ └─────────────┘
- Data Ingestion - Collect and validate input data
- Preprocessing - Clean, normalize, and transform data
- Feature Engineering - Extract relevant features
- Model Training - Train models on processed data
- Validation - Test model performance and accuracy
- Deployment - Serve models in production environment